Researchers at IIT Madras develop technique to produce graphene platelets using graphite

25 Oct, 2019
Researchers at IIT Madras develop technique to produce graphene platelets using graphite

On Thursday, an official statement from the Indian Institute of Technology Madras (IITM) said that its researchers have developed a technique to produce graphene platelets from graphite.

“They found that when graphite is suspended in an appropriate fluid and subjected to an intense shearing force of machining, the layers of graphite separate into graphene platelets,” a statement said.

The research was led by Sathyan Subbiah, Associate Professor, Department of Mechanical Engineering and his research student Wazeem Nishad.

What is graphene?

Graphene — an allotrope to use the technical term — is a form of carbon that shot into fame in 2010 through the Nobel Prize it earned for Sir Andre Geim and Sir Kostya Novoselov of the University of Manchester.

The idea of graphene is, however, not new. The history of this two-dimensional honeycomb-shaped carbon spans more than a century of worldwide research. Graphene is the building block of the more commonly known graphite; one millimeter-thick sheet of graphite is made of three million layers of graphene.

“Superior quality graphene is commonly prepared by the exfoliation method,” said Subbiah.

Subbiah looked at exfoliation from an unconventional angle.

“Graphite is a lubricant because it is made of layers of carbon that slide over one another. The lubricating action itself would shear the layers off, and cause separation of the 2-D graphene sheets,” he was quoted as saying in the statement.

The IITM researchers suspended graphite in a lubricant liquid containing sodium cholate to prevent the graphite particles from clumping together and subjected the suspension to the machining of mild steel using oscillations of a carbide tool.

As Subbiah had expected, the oscillations trapped the graphite to produce graphene flakes as a byproduct of the lubricant with thicknesses in the range of a few nanometers – a nanometre being one billionth of a metre; to put this in perspective, a single human hair is about 60,000 nanometres in diameter.

Subbiah also said, “Graphene is considered a super material of the century”.

It is one of the strongest materials known; puncturing a pristine single layer of graphene with a pen would require the pen to be pushed by a large car in fifth gear.

In addition, it conducts electricity 13 times better than copper, forms an excellent barrier layer and has an extremely high surface area — six grams of graphene could cover an entire soccer field, a property that makes it extremely useful in applications like catalysis.

The IITM team’s experiments showed that increasing the time of machining induces defects and disorders in the layers.

“We are now focusing on controlling the stresses and machining parameters to produce defect-free few-layer graphene,” said Subbiah on future directions of his research.

Shahzad has always wanted to pursue a career in writing, especially for education affairs. He loves to write news which are helpful for the students around the world.

LEAVE A REPLY

Please enter your comment!
Please enter your name here